Additional homework problems

1. Let F be any field. Prove that for every x in $F, x \cdot 0=0$. Do this using just the properties listed on pages 2 and 3 of the textbook.
Proof: We start from $0+0=0$, which is true because 0 is the additive identity. Multipliying both sides by x, we conclude that $x(0+0)=x 0$. The distributive property allows us to expand the left side, so we find that $x 0+x 0=x 0$. At this point all we know is that $x 0$ is some element of F, but in any case it has an additive inverse, which we could call $-(x 0)$. Then adding this to both sides of the equality, we find that $(x 0+x 0)+$ $-(x 0)=x 0+-(x 0)$. The right side is 0 , by the definition of the additive inverse. Using the associative law, we can rewrite the left side, obtaining $x 0+(x 0+-(x 0))=0$. But $(x 0+-(x 0)=0$, so the equation becomes $x 0+0=0$. Since 0 is the additive identity, we conclude that $x 0=0$.
2. Prove that if x is any element of a field F, then $(-x)(-x)=x^{2}$. Again, just use the properties listed on pages 2 and 3 of the textbook.
I will write this somewhat more succintly. We start with the fact that $x+-x=0$, and use the previous result, the distributive, associative, and commuative laws:

$$
\begin{aligned}
x+-x & =0 \\
(x+-x)(-x) & =0(-x) \\
x(-x)+(-x)(-x) & =0 \\
x x+x(-x)+(-x)(-x) & =x x+0 \\
x(x+-x)+(-x)(-x) & =x x \\
x 0+(-x)(-x) & =x x \\
0+(-x)(-x) & =x x \\
(-x)(-x) & =x x
\end{aligned}
$$

3. Let F_{2} be the field with two elements. Find a polynomial of degree 2 with coefficients in F_{2} that has no roots in F_{2}. (Hint: Use trial and error if necessary.)
Solution: $p:=x^{2}+x+1$ has no roots in F_{2}. Indeed, $p(0)=1$ and $p(1)=1+1+1=1$, and there are no other possibilities.
